Современные тенденции развития компьютерной техники. Основные тенденции развития компьютерной техники

Компьютерные информационные технологии 2

(КИТ 2)

КОНСПЕКТ ДЛЯ ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

1. В.С. Оскерко, З.В. Пунчик. О.А. Сосновский Технологии баз данных. Учебное пособие, Минск БГЭУ 2007.

2. Оскерко В.С., Пунчик З.В. Практикум по технологиям баз данных: Учеб. пособие. Мн.: БГЭУ, 2004.

3. Оскерко, В.С. Компьютерные информационные технологии: учеб пособие: в 3 ч. Ч 2. Базы данных и знаний / В.С. Оскерко, З.В.Пунчик. – Минск: БГЭУ, 2011. – 227 с

В истории развития вычислительной техники можно выделить два основных два направления:

Первое направление - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. (Пример: конструирование сложных аппаратов, численное моделирование, задачи оптимизации, компьютерные игры и т.д). Становлению этого направления способствовало интенсификации методов численного решения сложных математических задач, развитию языков программирования (FORTRAN, PASCAL, C++ и т.д.)

Второе направление - это использование средств вычислительной техники в автоматических или автоматизированных информационных системах, т.е. программных комплексов для надежного хранения информации в памяти компьютера, поиск и преобразования хранимой информации. Обычно объемы хранимой информации велики (до ГБ, ТБ), а сама информация имеет достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т.д.

Это направление возникло несколько позже первого. Это связано с тем, что на заре вычислительной техники компьютеры обладали ограниченными возможностями в части памяти. В начале использовались два вида устройств внешней памяти: магнитные ленты и барабаны. При большой емкости магнитные ленты по своей физической природе обеспечивали последовательный доступ к данным. Магнитные барабаны давали возможность произвольного доступа к памяти, но были ограниченного размера. С появлением магнитных дисков началась история управления данными во внешней памяти. В настоящее время магнитные диски (винчестеры) позволяют хранить сотни и тысячи Гб информации.

Предметом курса КИТ 2 является второе направление- изучение технологий организации, хранения и обработки данных в современных информационных системах.

Курс тесно связан с курсом «Компьютерные информационные технологии 1,3», а также со специальными экономическими дисциплинами.

2. Понятие экономической информации

Термин «информация » происходит от латинского informatio – что означает изложение, разъяснение. В научных и официальных источниках этот термин трактуется по- разному. Будем придерживаться такого определения:



Информация – совокупность фактов, явлений, событий, представляющий интерес, подлежащих регистрации и обработке.

Это понятие теоретически подразумевает взаимодействие двух партнеров: источника и приемника информации. В роли каждого из них может выступать объект науки и техники, общества и природы, животные и люди.

В теории информации под этим термином понимается такое сообщение, которое содержит факты, неизвестные ранее потребителю и дополняющие его представление об изучаемом или анализируемом объекте. Для определения количественной меры информации в 1946 г. американский ученый-статистик Джон Тьюки предложил название БИТ (BIT - аббревиатура от BInary digiT), одно из главных понятий XX века. Тьюки избрал бит для обозначения одного двоичного разряда, способного принимать значение 0 или 1.

В 1948 году американский математик Клод Шеннон использовал бит как единицу измерения информации. Мерой количества информации Шеннон предложил считать функцию, названную им энтропией.

H = -∑ P i log 2 P i , (1)

где P i - вероятность наступления некоторого события.

Из (1) очевидно, что чем менее вероятно событие, тем больше информации оно в себе несет (энтропия Н такого события по Шеннону выше). События, вероятность наступления которых равна или близка к 1 несут в себе мало информации.

Пример

Если нам несколько раз подряд сообщать одни и те же новости, то уже на второй раз мы не получим никакой новой информации, т.к. мы ее уже слышали. Вероятность в этом случае P i =1, и энтропия по Шеннону Н=0, а значит не нужно ни одного бита для представления вновь поступившей информации. С другой стороны, если вероятность наступления новость близка к 0 (такие новости в средствах массовой информации называются сенсацией), то энтропия будет большой и для представления поступившей информации требуется большое количество бит.

Другими словами: информация – это сведения, которые должны снять у потребителя существующую до их получения неопределенность, расширить его понимание объекта полезными для потребителя сведениями.

Информация- это неубывающий ресурс жизнеобеспечения, ее объем в течение времени возрастает. В 70- е годы прошлого столетия объем информации удваивался каждые 5- 7 лет. В 80 –е годы удвоение происходило уже за 20 месяцев, в настоящее время - ежегодно.

Информация охватывает все стороны жизни общества – от материального производства до социальной сферы. По сфере применения в деятельности человека она подразделяется на научно-техническую, производственную, управленческую, социальную и т.п.

Информация, которая обслуживает процессы производства, распределения, обмена и потребления материальных благ и обеспечивает решение задач управления народным хозяйством и его звеньями, называется управленческой . Важным компонентом управленческой информации является экономическая.

Экономическая информация – это совокупность различных сведений экономического характера, используемых для планирования, учета, контроля, анализа и управления народным хозяйством и его звеньями .

Экономическая информация включает сведения о трудовых, материальных и денежных ресурсах и деятельности экономических объектов (предприятий, организаций, банков, фирм и т.д.) на определенный момент времени. Эти сведения представляются натуральными и стоимостными показателями.

Экономическую информацию, циркулирующую в любом экономическом объекте, можно классифицировать по разным признакам:

· по функциям управления – учетная, плановая, статистическая, оперативного управления и др.;

· по месту возникновения – внутренняя и внешняя;

· по стадиям образования – первичная и вторичная;

· по способу представления – цифровая, алфавитно-цифровая, графическая;

· по стабильности – переменная, условно-постоянная, постоянная;

· по полноте – недостаточная, достаточная, избыточная;

· по истинности – достоверная, недостоверная;

· по временному периоду возникновения – периодическая и непериодическая.

Наиболее важными характеристиками экономической информации являются:

Корректность

Полезность

Оперативность

Точность

Достоверность

Устойчивость

Достаточность

Корректность – обеспечивает ее однозначное восприятие всеми потребителями

Ценность (полезность) - проявляется в том случае, если она способствует достижению стоящей перед потребителем цели (Относительность ценности – новая информация может быть более ценной)

Оперативность – отражает актуальность информации для необходимых расчетов и принятия решений в изменившихся условиях

Точность – определяет допустимый уровень искажения информации

Достоверность – определяется свойством информации отражать реально существующие объекты и процессы с необходимой точностью

Устойчивость- отражает способность реагировать на изменения без нарушения необходимой точности. Устойчивость определяется выбранной методикой ее отбора и формирования

Достаточность (полнота) – она содержит минимально необходимый объем сведений для принятия правильного решения. Неполная информация снижает эффективность принятия решений. Избыточность обычно снижает оперативность и затрудняет принятие решения, но зато делает информацию более устойчивой.

Структурными единицами экономической информации являются реквизиты, показатели, документы, массивы.

Реквизиты выражают определенные свойства объекта и подразделяются на реквизиты-признаки и реквизиты-основания.

Реквизит-признак характеризует качественные свойства объекта (например, Ф.И.О. исполнителя, наименования работ, дата заключения договора, и т. д.).

Реквизит-основание дает количественную характеристику объекта, выраженную в определенных единицах измерения (например, количество изделий в штуках, цена продукта в рублях и т. д.)

Реквизиты имеют наименования и значения. Область значений описывается форматом. Формат определяет тип и максимальную длину значений. Тип может быть числовым, символьным, логическим и дата/время. Для записи формата используются определенные символы.

Совокупность реквизита-основания и логически связанных с ним реквизитов-признаков, имеющих экономический смысл, образует показатель .

Пример:

Реквизиты-признаки: «Предприятие», «Ф.И.О. менеджера»

Реквизит-основание: «Количество выполненных заказов»

Показатель: «Количество заказов, выполненных менеджером Петровым А.И., составило 100 заказов».

На основе показателей строятся документы.

Документ – это материальный объект, содержащий информацию, оформленную в установленном порядке, и имеющий в соответствии с действующим законодательством правовое значение. Экономические объекты широко применяют различные документы (платежные поручения, акты, сводки, ведомости и т. д.) для отражения своей деятельности.

Совокупность документов, объединенных по определенному признаку, образует массив . Пример массива – множество финансовых отчетов предприятий некоторой отрасли.

3. Экономические информационные системы

Система (ИС) в широком смысле слова – это совокупность объектов и отношений между ними, образующая единое целое. Системе свойственны:

· делимость – система состоит из ряда элементов, отвечающих конкретным целям и задачам;

· многообразие элементов и различия их природы, что связано с их функциональной специфичностью и автономностью;

· целостность – функционирование множества элементов подчинено единой цели;

· структурированность, обусловленная наличием связей между элементами, которые распределены по уровням иерархии.

На любой стадии развития общество требует для своего управления предварительно подготовленной, систематизированной информации.

Управление – это процесс целенаправленного воздействия на объект или систему, организующий функционирование объекта или системы по заданной программе . Систему, реализующую функции управления, называют системой управления . Кибернетика (наука об управлении) представляет эту систему как совокупность объекта управления и субъекта управления – управленческого аппарата. Управление связано с обменом информацией между компонентами системы, а также системы с окружающей средой.

Информационная система – это система информационного обслуживания работников управленческого аппарата, выполняющая технологические функции по сбору, накоплению, хранению и обработке информации. Основная цель информационной системы – это удовлетворение информационных потребностей пользователей путем предоставления им необходимой информации на основе хранимых данных.

ИС можно рассматривать как сложную систему, состоящую из нескольких взаимодействующих слоев (рис. 1). В основании пирамиды, представляющей ИС, лежит слой компьютеров – центров хранения и обработки информации, и транспортная подсистема, обеспечивающая надежную передачу информации между компьютерами.


Рис.1. Многослойное представление информационной системы

Над транспортной системой работает слой сетевых операционных систем, который организует работу приложений в компьютерах и предоставляет через транспортную систему ресурсы своего компьютера в общее пользование.

Над операционной системой работают различные приложения, но из-за особой роли систем управления базами данных (СУБД), хранящих в упорядоченном виде основную корпоративную информацию и производящих над ней базовые операции поиска, этот класс системных приложений обычно выделяют в отдельный слой ИС.

На следующем уровне работают системные сервисы, которые, пользуясь СУБД, как инструментом для поиска нужной информации среди миллионов и миллиардов байт, хранимых на дисках, предоставляют конечным пользователям эту информацию в удобной для принятия решения форме, а также выполняют некоторые общие для предприятий всех типов процедуры обработки информации. К этим сервисам относится служба WorldWideWeb, система электронной почты, системы коллективной работы и многие другие.

И, наконец, верхний уровень ИС представляют специальные программные системы, которые выполняют задачи, специфические для данного предприятия или предприятий данного типа. Примерами таких систем могут служить системы автоматизации банка, организации бухгалтерского учета, автоматизированного проектирования, управления технологическими процессами и т.п.

Конечная цель ИС воплощена в прикладных программах верхнего уровня, но для их успешной работы абсолютно необходимо, чтобы подсистемы других слоев четко выполняли свои функции.

Стратегические решения, как правило, влияют на облик ИС в целом, затрагивая несколько слоев сетевой "пирамиды", хотя первоначально касаются только одного конкретного слоя или даже отдельной подсистемы этого слоя. Такое взаимное влияние продуктов и решений нужно обязательно учитывать при планировании ИС, иначе можно столкнуться с необходимостью срочной и непредвиденной замены, например, сетевой технологии, из-за

Экономическая информационная система (ЭИС) – это система, функционирование которой во времени заключается в сборе, обработке и распространении информации о деятельности некоторого экономического объекта. Важнейшие функции ЭИС – учет, анализ, контроль, регулирование, прогнозирование и планирование экономических процессов.

Возрастание объемов информации в сфере управления, усложнение ее обработки невозможно без применения вычислительной техники.

Пример

В 30-х годах двадцатого столетия для решения проблем управления тогдашним хозяйством требовалось производить порядка 10 14 математических операций в год, а в средине 70-х, - уже примерно 10 16 . Если принять, что один человек без помощи техники способен произвести в среднем 10 6 операций в год (пропускная способность человека оценивается 2-4 бит/с), то получится, что необходимо около 10 миллиардов человек, для того, чтобы экономика оставалась хорошо управляемой.

Поэтому в настоящее время ЭИС представляет собой компьютеризированную информационную систему, использующую для обмена информацией компьютерные сети и самые современные компьютеры. В курсе «Компьютерные информационные технологии» в дальнейшем будет изучаться самый широкий спектр таких систем, как MRP, ERP, CSRP.

ЭИС могут быть классифицированы по ряду признаков:

· По сфере функционирования объекта управления

ЭИС промышленности

ЭИС сельского хозяйства

ЭИС транспорта

ЭИС связи и т.д.

· По видам процессов управления

o Банковские ЭИС

o АИС фондового рынка

o Финансовые ЭИС

o Страховые ЭИС

o Налоговые ЭИС

o ЭИС таможенной службы

o Статистические ЭИС

o ЭИС промышленных предприятий (бухгалтерия, оперативное управление и т.д.)

o ЭИС научных исследований

· По уровню в системе государственного управления

Отраслевые ЭИС

Территориальные ЭИС

Межотраслевые ЭИС

Важнейшим элементом ЭИС является информационное обеспечение. Информационное обеспечение представляет собой информацию, характеризующую состояние управляемого объекта, и является основой для принятия управленческих решений. Оно включает:

· системы показателей, описывающих деятельность экономического объекта;

· системы классификации и кодирования информации;

· документацию для отображения показателей;

· информационную базу.

Информационная база включает внутреннюю и внешнюю информацию, хранящуюся на различных носителях. Внутренняя информация возникает в самой системе и отражает финансово-хозяйственное состояние экономического объекта в различные временные интервалы. Внешняя информации характеризует состояние рынка и конкурентов, процентные ставки и цены, налоговую политику и политическую ситуацию и др. На основе информационной базы функционирует ЭИС.

Курсовая работа по теме:

ЭТАПЫ И ТЕНДЕНЦИИ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ


Введение

Глава 1. Информатизация общества

1.2 Информационная культура человека

Глава 2. Поколения ЭВМ. Классификация современных компьютеров по функциональным возможностям

2.1 Краткая история докомпьютерной эпохи

2.2 Открытия, предшествующие созданию компьютеров

2.3 Поколения ЭВМ

2.3.1 ЭВМ первого поколения

2.3.2 ЭВМ второго поколения

2.3.3 ЭВМ третьего поколения

2.3.4 ЭВМ четвертого поколения

2.3.5 ЭВМ пятого поколения

2.4 Тенденции развития вычислительной техники. Компьютер будущего

Глава 3. Информационные технологии

3.1 Информационные технологии. Определение, цель и основные свойства

3.2 Развитие информационных технологий

Заключение

Литература


Введение

На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался, и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений, иными словами, необходимо было научиться целенаправленно работать с информацией и использовать для ее получения, обработки и передачи компьютерную информационную технологию. Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой - к созданию новых средств и способов удовлетворения этих потребностей. В современном обществе к общей культуре человека добавилась еще одна категория – информационная.

Мир сейчас находится на пороге информационного общества. Началом такого перехода стало внедрение в различные сферы деятельности человека современных средств обработки и передачи информации. Переход от индустриального общества к информационному осуществляется благодаря информатизации общества – процессу, при котором создаются условия, удовлетворяющие потребности любого человека в получении необходимой информации. Основную роль, в информационном обществе, будет играть система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации.

Новые технологии являются главной движущей силой в дополнение к существующим силам мирового рынка. Всего несколько ключевых компонентов - микропроцессоры, локальные сети, робототехника, специализированные АРМ, датчики, программируемые контроллеры - превратили в реальность концепцию автоматизированного предприятия.

В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства. Уже сейчас при приеме на работу соискателям предъявляются требования по владению персональным компьютером и основными прикладными программами. Можно сделать вывод, что в современных условиях информационные технологии становятся эффективным инструментом совершенствования управления предприятием, особенно в таких областях управленческой деятельности, как стратегическое управление, управление качеством продукции и услуг, маркетинг, делопроизводство, управление персоналом.

Цель работы: изучив доступные источники информации, выяснить основные этапы и тенденции в развитии вычислительной техники и информационных технологий. Знание истории всегда помогает понимать новое, тем более при современном темпе развития информационных технологий. Для решения поставленной цели необходимо:

1. кратко изучить историю докомпьтерной эпохи и познакомиться с открытиями предшествующими появлению ЭВМ;

2. рассмотреть поколения ЭВМ и их отличительные особенности;

3. познакомится с основными тенденциями в развитии компьютерной техники;

4. выяснить смысл понятия «информационные технологии»;

5. кратко рассмотреть этапы развития информационного общества, его информатизацию

6. выяснить основные тенденции в развитии информационных технологий.


Глава 1. Информатизация общества

1.1 Этапы развития информационного общества. Его информатизация

В развитии человечества существуют четыре этапа, названные информационными революциями, которые внесли изменения в его развитие.

Первая – связана с изобретением письменности. Это обусловило качественный гигантский и количественный скачек в развитии общества. Знания стало возможно накапливать и передавать последующим поколениям, т.е. появились средства и методы накопления информации. В некоторых источниках считается, что содержание первой информационной революции составляет распространение и внедрение в деятельность и сознание человека языка.

Вторая (середина XVI века) – изобретение книгопечатания. Это дало в руки человечеству новый способ хранения информации, а так же сделало более доступным культурные ценности.

Третья (конец XIX века) – изобретение электричества. Появились телеграф, телефон и радио, позволяющие быстро передавать и накапливать информацию в любом объеме. Появились средства информационных коммуникаций.

Четвертая (70-е годы ХХ века) – изобретение микропроцессорной технологии и персональных компьютеров. Толчком к этой революции послужило создание в середине 40-х годов ЭВМ. Эта последняя революция дала толчок человеческой цивилизации для переходы от индустриального к информационному обществу- обществу, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формой – знанием. Началом этого послужило внедрение в различные сферы деятельности человека современных средств обработки и передачи информации – этот процесс называется информатизацией.

Информатизация общества – процесс, при котором создаются условия, удовлетворяющие потребностям любого человека в получении необходимой информации (по закону РФ «Об информации, информатизации и защите информации» от 25 января, 1995 года).

До недавнего времени вместо термина «информатизация» использовался «компьютеризация», который означал развитие и внедрение компьютеров. Но информатизация общества является более широким понятием, так как сегодня главным являются не столько технические средства, сколько сущности и цели социально-технического процесса в целом. Компьютеры являются только частью процесса информатизации общества – ее базовой технической составляющей.

Основные черты информационного общества:

1. Увеличение объема информации приводит к тому, что человек сам не способен ее обработать, для этого ему необходимо использовать специальные технические устройства – компьютеры.

2. Движущей силой общества станет производство информационного продукта. Во второй половине ХХ века появился новый социальный слой «белые воротнички» - люди, не производящие непосредственно материальные ценности, а занятые обработкой информации.

3. Увеличится доля умственного труда, так как продуктом производства в информационного общества станут знания и интеллект.

4. Произойдет переоценка ценностей, уклада жизни и изменится культурный досуг. Уже сейчас компьютерные игры занимают большую часть свободного времени человека. Сейчас все большее распространение получают сетевые игры. Растет время проведенной в Интернете, здесь можно «путешествовать» по образовательным сайтам, виртуальным музеям, читать книги, общаться.

5. Будет развиваться компьютерная техника, компьютерные сети, информационные технологии.

6. Появятся новые электронные компьютеризированные бытовые приборы. Предполагается, что дома будут оснащаться единым информационным кабелем, который возьмет на себя все информационные связи, включая каналы кабельного телевидения и выход в Интернет. Специальный электронный блок будет контролировать всю бытовую технику.

7. Производством энергии и материального продукта будут заниматься машины, а человек главным образом обработкой информации.

8. В сфере образования будет создана система непрерывного образования.

9. Появится, и будет развиваться рынок информационных услуг.

Информационное общество кроме всех перечисленных выше благ несет для человека и множество этических и правовых проблем. К некоторым из них можно отнести:

- «информационные войны»;

Информационное неравенство;

Психологические проблемы связанные с виртуальной реальностью;

Сложность выбора качественной и достоверной информации из большого объема

В связи с переходом к информационному обществу к общей культуре человека добавилась – информационная культура. Которая характеризует умение человека целенаправленно работать с информацией и использовать ее для получения, обработки и передачи компьютерную информационную технологию, современные технические средства и методы.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Кафедра ТПО

РЕФЕРАТ

По Информатике и вычислительной технике

«Тенденции и перспективы развития информатики и вычислительной техники»


Введение

1. Тенденции развития вычислительных систем

2. Тенденции развития информатики

Заключение

Список литературы


Введение

Появление и развитие электронной вычислительной техники во второй половине ХХ века оказало и продолжает оказывать огромное влияние на мировое общество и мировую экономику. Значимость информационных технологий на основе компьютеризации носит глобальный характер. Их воздействие касается государственных структур и институтов гражданского общества, экономической и социальной сфер, науки и образования, культуры и образа жизни людей.

В наше время жизнь каждого отдельного человека и всего социума в целом тесно связана с компьютером. Электронно-вычислительная техника всё шире входит во все сферы нашей жизни. Компьютер стал привычным не только в производственных целях и научных лабораториях, но и в студенческих аудиториях и школьных классах. Непрерывно растёт число специалистов, работающих с персональным компьютером, который становится их основным рабочим инструментом. Ни экономические, ни научные достижения невозможны теперь без быстрой и четкой информационной связи и без специального обученного персонала.

В продолжение всей истории вычислительной техники дискутируется проблема специализации средств вычислительной техники (СВТ) и вычислительных систем (ВС) в постановке: альтернатива это или дополнение к направлению развития универсальных компьютерных систем. Станет ли «универсальная» ВС «специализированной», если в ее состав будет включен, например, специализированный процессор? Вместе с тем, любая конкретная универсальная ВС ограничена сферой своего целевого назначения и вследствие этого приобретает свойства специализированности (по крайней мере, на уровне прикладного программного обеспечения).

Академик В.М. Глушков подчеркивал: «… требования увеличения эффективности оборудования, а также упрощения программирования и облегчения общения с человеком ведут к специализации процессоров, хотя каждый из таких специализированных процессоров будет оставаться алгоритмически универсальным и потому в принципе пригодным и для других применений»

Кроме того, успешная реализация ряда современных проектов, связанных с разработкой и производством современных военных систем, позволяет говорить о серьезном прорыве в традиционных подходах к формированию технической и бизнес-политики создания компьютерных систем. Основу этого прорыва составляет то, что для реализации военных проектов широко использованы готовые аппаратные и программные технологии открытого типа, ранее широко апробированные и стандартизированные на рынке общепромышленных гражданских приложений. Это так называемые COTS-технологии (Commercial Off-The-Shelf – «готовые к использованию»). Нормативная база COTS-технологий развивается и поддерживается как в рамках международных (IEC/МЭК, ISO) и национальных (ANSI, DIN, IEEE, ГОСТ) организаций по стандартизации, так и в рамках крупных профессиональных консорциумов (ARINC, PCISIG, VITA, PICMG, Group IPC и т.д.). Стандартизация ведется совместными усилиями большого числа конкурирующих компаний: Motorola, HP, IBM, Sun, производящих совместимую серийную технику.

развитие вычислительная система информатика


Тенденции развития вычислительных систем

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер применения ЭВМ и, как следствие, переход от отдельных машин к их системам – вычислительным системам и комплексам разнообразных конфигураций с широким диапазоном функциональных возможностей и характеристик.

Наиболее перспективные, создаваемые на основе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы – вычислительные сети – ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные услуги: электронную почту, системы телеконференций и информационно-справочные системы.

Специалисты считают, что в первой четверти XXI в. в цивилизованных странах произойдет смена основной информационной среды. Удельные объемы информации, получаемой обществом по традиционным информационным каналам (радио, телевидение, печать) станут катастрофически малы по сравнению с объемами получаемой информации посредством компьютерных сетей.

Прогнозируется дальнейший рост массового производства и распространения персональных ЭВМ, встраиваемых микропроцессоров, создания глобальных и региональных сетей обмена информацией. Примером здесь является развитие сети Internet.

Уже сегодня пользователям глобальной сети Internet стала доступной практически любая находящаяся в хранилищах знаний этой сети не конфиденциальная информация.

Электронная почта Internet позволяет получить почтовое отправление из любой точки Земного шара (где есть терминалы этой сети) через 5 с, а не через неделю или месяц, как это имеет место при использовании обычной почты.

В Массачусетском университете (США) создана электронная книга, куда можно записывать любую информацию из сети; читать эту книгу можно, отключившись от сети, автономно, в любом месте. Сама книга в твердом переплете, содержит тонкие жидкокристаллические индикаторы – страницы с бумагообразной синтетической поверхностью и высоким качеством "печати".

При разработке и создании собственно ЭВМ существенный и устойчивый приоритет в последние годы имеют сверхмощные компьютеры – суперЭВМ и миниатюрные, и сверхминиатюрные ПК. Ведутся, как уже указывалось, поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, – нейрокомпьютеров. В частности, в нейрокомпьютерах могут использоваться уже имеющиеся специализированные сетевые МП – транспьютеры.

Транспьютер – микропроцессор сети со встроенными средствами связи. Например, транспьютер IMS T 800 при тактовой частоте 30 МГц имеет быстродействие 15 млн. оп/с (операций в сек.), а транспьютер Intel WARP при тактовой частоте 20 МГц – 20 млн. оп/с (оба транспьютера 32-разрядные).

Ближайшие прогнозы по созданию отдельных устройств ЭВМ:

1. Микропроцессоры с быстродействием 1000 MIPS (MIPS - скорость операций в единицу времени) и встроенной памятью 16 Мбайт.

2. Встроенные сетевые и видеоинтерфейсы;

3. Плоские (толщиной 3-5 мм) крупноформатные дисплеи с разрешающей способностью 1000x800 пикселей и более;

4. Портативные, размером со спичечный коробок, магнитные диски емкостью более 100 Гбайт. Терабайтные дисковые массивы на их основе сделают практически ненужным стирание старой информации.

Повсеместное использование мультиканальных широкополосных радио-, волоконно-оптических, а в пределах прямой видимости и инфракрасных каналов обмена информацией между компьютерами обеспечит практически неограниченную пропускную способность (трансфер до сотен миллионов байт в секунду).

Широкое внедрение средств мультимедиа, в первую очередь аудио- и видеосредств ввода и вывода информации, позволит общаться с компьютером на естественном языке. Мультимедиа нельзя трактовать узко, только как мультимедиа на ПК. Можно говорить о бытовом (домашнем) мультимедиа, включающем в себя и ПК, и целую группу потребительских устройств, доводящих потоки информации до потребителя и активно забирающих информацию у него.

Этому уже сейчас способствуют:

1. Зарождающиеся технологии медиа-серверов, способных собирать и хранить огромнейшие объемы информации и выдавать ее в реальном времени по множеству одновременно приходящих запросов;

2. Системы сверхскоростных широкополосных информационных магистралей, связывающие воедино все потребительские системы.

Названные ожидаемые технологии и характеристики устройств ЭВМ совместно с их общей миниатюризацией могут сделать всевозможные вычислительные средства и системы вездесущими, привычными, обыденными, естественно насыщающими нашу повседневную жизнь.

Специалисты предсказывают в ближайшие годы возможность создания компьютерной модели реального мира, такой виртуальной (кажущейся, воображаемой) системы, в которой мы можем активно жить и манипулировать виртуальными предметами. Простейший прообраз такого кажущегося мира уже сейчас существует в сложных компьютерных играх. Но в будущем можно говорить не об играх, а о виртуальной реальности в нашей повседневной жизни, когда нас в комнате, например, будут окружать сотни активных компьютерных устройств, автоматически включающихся и выключающихся по мере надобности, активно отслеживающих наше местоположение, постоянно снабжающих нас ситуационно необходимой информацией, активно воспринимающих нашу информацию и управляющих многими бытовыми приборами и устройствами.

История и тенденции развития вычислительной техники

Принципы построения компьютера

В 1946 году появилась первая электронная вычислительная машина (компьютер), что явилось громадным достижением человечества. В реализации проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др.
Размещено на реф.рф
С этого момента началась эра вычислительной техники. За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из базовых составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль де-ятельности человека. Влияние вычислительной техники на всœе сферы деятельности человека продолжает расширяться. Сегодня компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.

Математические основы автоматических вычислений были уже разработаны ранее (Г. Лейбниц, Дж. Буль, A. Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счетов до механических и электромеханических вычислителœей) не привели к созданию надежных и экономически эффективных машин.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина (ЭВМ) , или компьютер , - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователœей. Следует отметить, что в настоящее время термин "электронная вычислительная машина" практически не используется, уступив место термину "компьютер".

Под пользователœем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. При этом подготовка задач к решению была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователœей во многих случаях специальных знаний и навыков. Как правило, время подготовки задач во много раз превышает время их решения.

Важно заметить, что для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и компьютера в целом, а также облегчения их эксплуатации создается специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Структура представляет собой совокупность элементов и их связей. Учитывая зависимость отконтекста различают структуры технических, программных, аппаратно-программных и информационных средств.

Часть программных средств обеспечивает взаимодействие пользователœей с компьютером и является своеобразным "посредником" между ними. Она получила название "операционная система" и является ядром программного обеспечения.

Под программным обеспечением понимают комплекс программных средств регулярного применения, создающий необходимый сервис для работы пользователœей.

Программное обеспечение (ПО) отдельных компьютеров и вычислительных систем (ВС), созданных на их основе, может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователœей и т.п. Развитие ПО в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

В общем случае процесс подготовки и решения задач предусматривает обязательное выполнение следующей последовательности этапов: формулировка проблемы и математическая постановка задачи; выбор метода и выработка алгоритма решения; программирование (запись алгоритма) с использованием некоторого алгоритмического языка; планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов компьютеров и вычислительных систем (ВС); формирование "машинной программы", то есть программы, которую непосредственно будет выполнять компьютер; собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития вычислительной техники автоматизация этих этапов идет снизу вверх. На пути развития электронной вычислительной техники обычно выделяют четыре поколения компьютеров, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ресурсам со стороны пользователœей.

Смене поколений сопутствует изменение базовых технико-эксплуатационных и технико-экономических показателœей компьютеров и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из базовых тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь пользователœей с компьютерами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на компьютеры в различных сферах их применения.

Возможности улучшения технико-эксплуатационных показателœей компьютеров в значительной степени зависят от элементов, используемых для построения их электронных схем. По этой причине при рассмотрении этапов развития компьютеров каждое поколение в первую очередь характеризуется используемой элементной базой.

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телœеграфная аппаратура (телœетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал этап выполнения вычислений, так как у них практически отсутствовало какое-либо программное обеспечение. Все этапы подготовки пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. По этой причине в компьютерах следующих поколений появились сначала блоки программ, а затем целые программные системы, облегчающие процесс подготовки задач к решению.

На смену лампам пришли транзисторы в машинах второго поколения (начало 60-х годов). Применение постоянно совершенствуемых транзисторов позволило преобразовать окружающий человека мир (радио, телœевидение, бытовая аппаратура, системы связи и т.п.). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики постоянно улучшались. Существенно были уменьшены размеры, масса и потребляемая мощность.

В компьютерах этого поколения появились методы и приемы программирования, высшей ступенью которых явилось появление систем автоматизации программирования, значительно облегчающих труд математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. Это привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт.

Третье поколение компьютеров (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более улучшить технические и эксплуатационные характеристики машин. Вычислитель-ная техника стала иметь широкую номенклатуру устройств, которые позволили строить разнообразные системы обработки данных, ориентированные на различные применения.

Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Стоимость программного обеспечения стала расти и в настоящее время намного опережает стоимость аппаратуры (рис.13.1). Наибольшая крутизна графика соответствует времени появления операционных систем - началу 80-х годов.

ОС планирует последовательность распределœения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые применяются для вычислений: машинное время отдельных процессоров или компьютеров, входящих в систему; объёмы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы, как общего, так и специального применения, и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсœеместно в компьютерах различных классов.

Рис. 13.1. Динамика изменения стоимости аппаратурных и программных средств

Здесь были существенно расширены возможности доступа к ним со стороны абонентов, находящихся на различных, в т.ч. и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с компьютером достигалось за счёт развитой сети абонентских пунктов, связанных с ним информационными каналами связи, и соответствующего программного обеспечения.

Для компьютеров четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказало существенное воздействие на логическую структуру компьютера и его программное обеспечение

В четвертом поколении с появлением микропроцессоров (1971 ᴦ.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. Коренным образом были преобразованы сферы делопроизводства, торговли, складского учета и т.п. Компьютеры стали использоваться в различных системах управления технологическими процессами, производствами, фирмами, организациями и т.д.

Применение ПК позволило применять новые информационные технологии и создавать системы распределœенной обработки данных. Высшей стадией систем распределœенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

В своем развитии компьютеры первых четырех поколений не выходили за рамки классической структуры, ориентированной на последовательные вычисления по программе. Но в начале нового тысячелœетия (2005-2006 гᴦ.) в связи с успехами микроэлектроники появились, а затем стали доминировать многоядерные микропроцессоры. Это позволило пе-рейти к параллельным вычислениям даже внутри отдельного компьютера. Де-факто возникли качественно новые по построению и своим возможностям компьютеры следующего поколения. При этом еще в 1980 году появился японский проект создания компьютеров пятого поколения, отличительной особенностью которых должен быть встроенный искусст-венный интеллект. Видимо, несовпадение признаков классификации не позволяет сейчас узаконить переход на компьютеры нового поколения.

В новых компьютерах продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества, параллелизм в работе). Следует указать на заметный рост уровня "интеллектуальности" систем, создаваемых на их основе. Подобные тенденции будут сохраняться и впредь. Так, по мнению исследователœей , новые компьютеры наращивают и совершенствуют встроенный в них "искусственный интеллект", что позволяет пользователям обращаться к ним на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Аппаратная часть компьютеров постоянно усложняется, для них приходится создавать сложное многоэшелонное иерархическое программное обеспечение.

Основные характеристики и классификация компьютеров

Эффективное применение вычислительной техники предполагает, что каждый вид вычислений требует использования компьютера с определœенными характеристиками.

Важнейшими из них служат быстродействие и производительность. Эти характеристики достаточно близки, но их не следует смешивать.

Быстродействие характеризуется числом определœенного типа команд, выполняемых за одну секунду. Производительность - это объём работ (к примеру, число стандартных программ), выполняемый в единицу времени.

Определœение характеристик быстродействия и производительности представляет собой очень сложную инженерную и научную задачу, до настоящего времени не имеющую единых подходов и методов решения. Обычно вместо получения конкретных значений этих характеристик указывают результаты сравнения данных, полученных при испытаниях (тестированиях) различных образцов.

Другой важнейшей характеристикой компьютера является емкость запоминающих устройств . Емкость памяти измеряется количеством структурных единиц информации, ĸᴏᴛᴏᴩᴏᴇ может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных должна быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен 8 битам). Следующими единицами измерения служат .

Обычно отдельно характеризуют емкости оперативной и внешней памяти. Сегодня персональные компьютеры имеют емкость оперативной памяти, равную 512Мбайт, 1Гбайт и даже больше. Этот показатель очень важен для определœения, какие программные пакеты и их приложения могут одновременно обрабатываться в машинœе.

Емкость внешней памяти зависит от типа носителя. Так, практически исчезли из обращения дискеты как накопители и средства переноса и хранения данных. На смену им пришла флэш-память, емкость которой должна быть от нескольких Гбайт до Тб. Пока сохраняют свое значение и традиционные накопители. Емкость дисков DVD достигает нескольких десятков Гбайтов, емкость компакт-диска (CD-ROM) - 640 Мб и выше, жестких дисков - сотни Гбайт и т.д. Емкость внешней памяти характеризует объём программного обеспечения и отдельных программных продуктов, которые могут устанавливаться. К примеру, для установки операционной среды Windows 7 исходя из версии требуется объём памяти жесткого диска 160Гб-1Тб и оперативной памяти 1-3Гб.

Надежность - это способность компьютера при определœенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO - 2382/14-78).

Высокая надежность компьютера закладывается в процессе его производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (микропроцессоры и схемы памяти) резко сокращает число используемых интегральных схем, а значит, и число их соединœений друг с другом.

Точность - возможность различать почти равные значения (стандарт ISO 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью компьютера, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Современные компьютеры, включая ПК, имеют возможность работы с 32- и даже с 64-разрядными машинными словами. С помощью языков программирования данный диапазон должна быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

Достоверность - свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других компьютерах и сравнение результатов.

Усложнение схем компьютеров приводит к увеличению энергопотребления, что порождает целый ряд проблем. По этой причине для микропроцессоров введена характеристика, отражающая класс мощности (энерго-потребление, TDP - Thermal Design Power, тепловой пакет).

Сегодня в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящиеся к различным поколениям, типам, классам и отличающиеся своими областями применения, техническими характеристиками и вычислительными возможностями.

Основные черты рынка современных компьютеров - разнообразие и динамизм. Практически каждые полтора десятилетия меняется поколение машин, каждые два года _ основные типы микропроцессоров, СБИС, определяющих характеристики новых вычислителœей. Такие темпы сохраняются уже многие годы.

Рынок компьютеров постоянно имеет широкую градацию классов и моделœей. Существует большое количество классификационных признаков, по которым всœе это множество разделяют на группы: по уровням специализации (универсальные и специализированные), по типоразмерам (настольные, портативные, карманные), по совместимости, по типам используемых микропроцессоров и количеству их ядер, по возможностям и назначению и др.
Размещено на реф.рф
. Разделœение компьютеров по поколениям, изложенное в п. 13.1, также является одним из видов классификации. Наиболее часто используют классификацию компьютеров по возможностям и назначению, а в последнее время - и по роли компьютеров в сетях.

По возможностям и назначению компьютеры подразделяют:

· суперЭВМ , необходимые для решения крупномасштабных вычислительных задач, а также для обслуживания крупнейших информационных банков данных.

С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объёмов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. СуперЭВМ по сравнению с другими типами машин позволяют точнее, быстрее и качественнее решать крупные задачи, обеспечивая необходимый приоритет в научных выработках, в т.ч. и в перспективной вычислительной технике.

Неудивительно, что мощные компьютеры являются особым достоянием любого государства. В Интернете отслеживается список пятисот самых мощных компьютеров мира (top500.org). Их выработка возведена в ранг государственной политики ведущих в экономическом отношении стран и является одним из важнейших направлений развития науки и техники. Список top500 сейчас возглавляют китайский компьютер Tianhe-1A и компьютер Cray XT5-HE Jaguar, с быстродействием соответственно 2,67 и 1,759 PFLOP (1 петафлоп= оп/с). В списке top500 имеются суперкомпьютеры, используемые в России. Их число возросло до одиннадцати штук, и Россия вышла на 7-ое место. Пятьдесят самых мощных компьютеров России отслеживаются на отечественном сайте http//supercomputers.ru (список top50);

  • большие ЭВМ , предназначенные для комплектования ведомственных, территориальных и региональных вычислительных центров (министерства, государственные ведомства и службы, крупные банки и т.д.). Примером подобных машин, а точнее, систем, могут служить компьютеры, предназначенные для обеспечения научных исследований, для построения рабочих станций для работы с графикой, UNIX-серверов, кластерных комплексов;
  • средние ЭВМ , широко используемые для управления сложными технологическими и производственными процессами (банки, страховые компании, торговые дома, издательства). Компьютеры этого типа могут применяться и для управления распределœенной обработкой информации в качестве сетевых серверов;
  • персональные и профессиональные компьютеры (ПК) , позволяющие удовлетворить индивидуальные потребности пользователœей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня. К настоящему времени в развитых странах ниша ПК практически заполнилась;
  • мобильные и карманные компьютеры . Появление микропроцессоров способствовало разработке на их базе разнообразных устройств, используемых в различных областях жизнедеятельности человека: мобильная связь, бытовая техника, авто, игровые приставки, электронные записные книжки т.п. Аналитики предсказывают их прогрессирующее развитие на ближайшие 5-10 лет .

Появлению новых устройств способствуют следующие факторы:

  • экономические - новые устройства успешно конкурируют со старыми, традиционными. К примеру, сотовая связь уверенно отвоевывает клиентов обычной телœефонной связи;
  • технологические - новые технологии обеспечивают качественно новые услуги (мобильный офис, телœеконференции, предложение товаров от ближайших поставщиков и т.д.);
  • социальные - мобильные телœефоны и досуг с использованием Интернета становятся стилем жизни;
  • бизнес-факторы - бизнес требует новых типов предложений под лозунгами "Услуги в любое время и в любом месте" и предоставления каждому "Своего офиса в кармане".

Рассмотрим упрощенную градацию подобных устройств.

Ноутбуки (Notebooks) . Совершенствование микропроцессоров привело к созданию мощных, дружественных и малогабаритных компьютеров, вполне способных обеспечить создание мобильного офиса различного класса с ориентацией на электронную почту, передачу факсов, доступ в Интернет. Интересно, что кризис IT-рынка почти не затронул сектор ноутбуков. Их производство устойчиво и вытесняет обычные ПК. Конфигурации ноутбуков обеспечивают широкие возможности. Ценовой диапазон - от 0,5 до 3-4 тысяч долларов. Миниатюрные ноутбуки позволяют решать практически всœе задачи, присущие настольным ПК, они обладают теперь достаточной мощностью, расширяемостью и гибкостью. Но пока они еще достаточно дороги, и время их автономной работы огра-ничено несколькими часами.

Младшей разновидностью ноутбуков следует считать UMPC (ultra-mobile PC, ультрамобильный ПК). В случае если UMPC достаточно дороги, то проект OLPC (One Laptop per Child - "По ноутбуку каждому ребенку") имеет целью развитие инфраструктуры беднейших стран мира. Согласно ему небольшие компьютеры, стоимостью менее 100$, должны в массовом количестве поставляться в беднейшие страны Африки, Азии и Латинской Аме-рики. Пока не удается снизить стоимость компьютеров ниже 150-200$.

Конкурентом младших моделœей ноутбуков следует считать нетбуки (netbooks) , ориентированные на работу с сетевыми ресурсами Интернета. Οʜᴎ появились 2-3 года назад, но по числу продаж уже сравнялись с ноутбуками. Их производство набирает силу.

Карманные персональные компьютеры (КПК) . Эти компьютеры ориентированы на выполнение в основном информационных функций. Οʜᴎ имеют очень широкую номенклатуру и градацию. Центральной функцией этих устройств являлось обеспечение мобильной связи. Еще 5-7 лет назад компьютеры этого типа рассматривали как конкурентов ноутбуков, однако реальность показывает, что они должны в ближайшем будущем уступить место коммуникаторам, смартфонам и специализированным устройствам (для навигации или специального применения). Сегодня границу между различными типами этих устройств тяжело провести. Коммуникатор - это упрощенный КПК, дополненный функциональностью мобильного телœефона. От мобильного телœефона он отличается на-личием установленной развитой операционной системы. Обычно особенности управления телœефонами изготовителями не разглашаются.

Широкое распространение получили устройства, называемые смартфонами. Смартфоны (умные телœефоны), обрастая новыми функциями, способны заменить целый класс специализированных устройств и являются их киллерами.

Сегодня почти 50% населœения Земли имеет мобильные телœефоны. Современный телœефон стоимостью в 100$ оснащен цветным экраном, встроенным фотоаппаратом с разрешением 5-7 Мпикселов, ауди-оплеером. Некоторые из них способны вести видеосъемки, просматривать видеофильмы, иметь игротеки. Некоторые способны заменить библиотеку, компьютер с доступом в Интернет и E-mail.

Встраиваемые микропроцессоры , осуществляющие автоматизацию управления отдельными устройствами и механизмами. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Οʜᴎ находят всœе большее применение в бытовой технике (телœе-фонах, телœевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло-, водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, всœе больше изменяя среду обитания человека.

Высокие скорости вычислений позволяют перерабатывать и выдавать всœе большее количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми вычислителями. По этой причине всœе современные компьютеры в настоящее время имеют средства подключения к сетям связи и объединœения в системы. С развитием сетевых технологий всœе больше начинает использоваться другой классификационный признак, отражающий их место и роль в сети. Согласно ему предыдущая классификация отражается на сетевой среде:

  • мощные машины, включаемые в состав сетевых вычислительных центров и систем управления гигантскими сетевыми хранилищами информации;
  • кластерные структуры;
  • серверы;
  • рабочие станции;
  • сетевые компьютеры.

Мощные машины и системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры представляют из себямногомашинные распределœенные вычислительные системы, объединяющие под единым управлением несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

Серверы - это вычислительные машины и системы, управляющие определœенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, веб-серверы и др.

Термин "рабочая станция" отражает факт наличия в сетях абонентских пунктов, ориентированных на работу профессиональных пользователœей с сетевыми ресурсами. Этот термин как бы отделяет их от ПК, которые обеспечивают работу основной массы непрофессиональных пользователœей, работающих обычно в автономном режиме.

Сетевые компьютеры . На базе существующих стандартных микропроцессоров появляется новый класс устройств, получивший это название. Само название говорит о том, что они предназначаются для использования в компьютерных сетях. Учитывая зависимость отвыполняемых функций и от контекста под этим термином понимают совершенно различные устройства, от простейшего компьютера-наладонника до специализированных сетевых устройств типа "маршрутизатор", "шлюз", "коммутатор" и т.п.

Число приведенных типов компьютеров в индустриально развитых странах образует некое подобие пирамиды с определœенным соотношением численности каждого слоя. Распределœение вычислительных возможностей по слоям должно быть сбалансировано.

История и тенденции развития вычислительной техники - понятие и виды. Классификация и особенности категории "История и тенденции развития вычислительной техники" 2017, 2018.

В прошедшем столетии были сделаны многие открытия и изобретения, сыгравшие революционную роль в развитии современной цивилизации.

    создание и развитие средств связи, особенно беспроводной.

    Изобретение кинематографа.

    Возникновение и развитие авиации и космической техники. Современные летательные аппараты по своим техническим и конструктивным характеристикам не сопоставимы с первыми летательными аппаратами.

    Но наиболее разительный прогресс произошел в области вычислительной техники. (ок 50 лет назад первые ЭВМ имели вез ок. 30 тонн, площадь ок. 200м 2)

время выполнения вычислений измерялось часами или сутками.

Теперь ЭВМ можно разместить на кремниевом кристалле S=5мм 2 , время выполнения расчетов – микросекунды, стоят мало.

При этом в отличие от 1ых ЭВМ, которые программируют в математических кодах и способны были выполнять главным образом только громоздкие математические вычисления, то современные ЭВМ способны доказывать теоремы, переводить текст, воспроизводить движущиеся объекты.

Появление первой машины для выполнения четырех арифметических действий дотируется началом 17 в. (1623 г В. Шикард изобрел мех. машину сложения, вычитания, частично умножения и деления), но более известным оказался настольный арифмометр (1642г.) франц. ученым Паскалем. 1671г. Лейбниц изобрел т.н. зубчатое колесо Лейбница, позволяющее выполнять 4 арифметические операции.

В 19 в. обострилась потребность в выполнении вычислении, связанных с обработкой результатов астрономических наблюдений, расчеты, связанные с составление математических таблиц. Поэтому в 1823 англ. математик Чарльз Бэббидж начал разрабатывать автоматизированную разностную машину, приводимую в действие паровым двигателем.

Машина должна была вычислять значения полиномов и печатать результаты на негативе для фотопечати, однако существующее в то время технические средства не дали возможности завершить воплощение этой идеи, а кроме того, сам Бэббидж увлекся проектированием более мощной счетной машины. Новая счетная машина Бэббиджа получила название «аналитическая».

1894 г. он изложил ее основные принципы, которые были воплощены в ткацком станке программы с перфокарточным управлением француза Жаккаром.

Аналитическая машина явилась одной из первых программируемых автоматических вычислительных машин с последовательным управлением. Она имела арифметическое устройство и память.

Меценат проекта была графиня Ада Августа Лавлейс – первый женщина программист. В честь ее назван язык программирования «Ада».

В конце 19 в. Холлерит разработал машину с перфокарточным вводом, способную автоматически классифицировать и составлять таблицу данных. Она была использована в 1890 г. в Америке на ней проведены переписи населения. Программа считывалась с перфокарты с помощью электроконтактных щеток. В качестве цифровых счетчиков – эм реле.

1896 г. Хоррелит основал фирму, предшественницу IBM.

После смерти Бэббиджа заметно прогрессов не было.

скорость вычисление механич. или элетромех. машин была ограничена, поэтому в 30хх гг. 20 в началась разработка электронных вычислительных машин (ЭВМ). На основе вакуумных 3х электродных лампах (триодах), которые изобрел в 1906 Лид Фрест.

Первая универсальная ЭВМ «Эниак» была разработана в пенсильваском институте США (1940-1946 г.) – разработка численных таблиц для вычисления траектории полета объектов. (18 тыс. электронных плат, 140 кВт, 10ая СС, программировалась вручную с помощью переключателей.

Современные тенденции развития средств вычислительной техники.

В настоящее врем в мире происходит переход от индустриального общества к информационному. Если главным содержанием индустриального общества было производство и потребление мат. благ, то движущей силой информационного общества является создание и потребление информационных ресурсов различного типа и назначения. При этом достижение экономических и социальных результатов определяется не сколько и не столько наличием мат.-энергетических ресурсов, сколько масштабом и темпами информатизации общества и широким использованием информационных технологий во всех сферах человеческой деятельности.

Независимость от различия и особенностей процессов информации в различных областях общественной жизни для них характерно наличие 3х составляющих:

    идентичность (единообразие) основных средств производства (средства выч. техники и информатики)

    идентичность «сырья» (исходные данные, подлежащие анализу и обработке)

    Идентичность выпускаемой продукции («обработанная» информация)

Ключевая роль в инфраструктуре информации принадлежит системным телекоммуникациям, а также выч. системам и их сетям.

В этих областях сосредоточены новейшие средства выч. техники, информатики и связи, а также используются наиболее прогрессивные информационные технологии.

В прошедшей истории развития ЭВТехники (начавшиеся с 40х гг 20в) можно выделить 4 поколения ЭВМ, отличающихся между собой элементной базой, функционально логической организацией, конструктивно-тех. исполнением, программным обеспечением, тех и эксплуатационным характеристиками режимами пользования.

Смене поколений сопутствовала изменение тех-эксплуатацион и тех-

экономических показателей ЭВМ.

В первую очередь это:

быстродействие, емкость памяти, надежность, стоимость.

Одновременно этому сопутствовала тенденция совершенствования программного обеспечения и повышение эффективности использования и обращения к ней.

В настоящее время ведутся работы над создание ЭВМ 5ого поколения, которые приблизили реальность создание искина.

Классификация средств эвТехники

К настоящему времени в мире уже произведенные работают и вновь создаются миллионы ЭВМ различного типа, класса и уровня.

ЭВТ принято делить на аналоговую и цифровую.

В АВМ информация представляется соответствующими значениями тех или иных аналогов (непрерывных физ. величин) – тока, напряжения, угла поворота и т.д.

АВМ обеспечивают приемлемое быстродействие, но умеренную точность вычислений ок. 10 -2 -10 -3

АВМ имеют достаточно ограниченное распространение и применяются главным образом в НИИ и проектно-конструкторских организациях при разработке исследований и совершенстве след. образцов техники, т.е. АВМ относятся к области специализируемых ЭВМ.

Более широкое распространение получили ЦВМ, в которых информация отображается с помощью цифровых или бинарных кодов.

Быстрые темпы развития и смены моделей ЦВМ затрудняют использование какой-либо их стандартной классификации.

Академик Глужков отмечал, что можно выделить 3 глобальных сферы, требующие использования качественно различных типов ЭВМ, а и.:

    традиционное применение ЭВМ для автоматизированных вычислений

    использование ЭВМ в различных системах управления (с 60х гг - сфера в наибольшей степени предполагает использование линии ЭВМ)

Машины этого профиля должны отвечать след. требованиям:

    более дешевыми по сравнению с большими централизованными ЭВМ.

    более надежными, особенно при работе непосредственно в контуре управления.

    обладать большей гибкостью и адаптивностью к условиями работы

    было архитектурно прозрачным, т.е. структура и функции ЭВМ должны быть понятны широкому пользователю.

3. Для решения задач искусственного интеллекта.

Рынок ЭВМ имеет широкий диапазон классов и моделей ЭВМ. Например, IBM, выпускающий приблизительно 80% мирового машинного парка производит главным образом 4 класса компьютеров:

    большие ЭВМ (mainframe ) – многопользовательские машины с централизованной обработкой информацию и различными формами удаленного доступа. По оценкам специалистов IBM ок. 50% всего объема данных в информационных системах мира должны хранится в больших машинах. Новое их поколение предназначено для использования в сетях в качестве крупных серверов.

Развитие ЭВМ данного класса имеет большое значение и для РФ, т.к. у нас имеется огромный задел по программе ЕС ЭВМ, заимствовавших архитектуру IBM 360 / 310 , поэтому принято решение продолжить развитие этого направления и в 1993 г. с IBM было подписано соглашение, согласно которому РФ получила право производить 23 вида новейших моделей – аналогов IBM с производительностью от 1,5 до 167 миллионов операций в сек.

    Машины RS / 6000 , у которых высокая производительность и предназначены для построения работы станций, для работы с графикой, для UNIX серверов и кластерных комплексов для научных исследований.

    Средние ЭВМ в первую очередь для работы в финансовых структурах (бизнес компьютеры). В них особенное внимание уделяется сохранению и безопасности данных, также программной совместимости. Эти машины используются в качестве серверов локальных сетей.

    Компьютеры на платформе микропроцессоров Intel

    Вычислительные системы, использующие параллельную работу.

Можно использовать след. классификацию средств ЭВМ на основе их разделения по быстроте действия :

    супер ЭВМ , для решения сложных вычислительных задач и для обслуживания крупнейших информационных банков данных

    большие ЭВМ , для ведомств, территориальных и региональных вычислительных центров.

    средние ЭВМ , для АСУТП (АСУ технологического процесса) и АСУП (производства), а также для управления распределенной обработкой информации в качестве серверов.

    персональные и профессиональные ЭВМ на их базе формируются АРМ (автоматизированные рабочие места) для специалистов различного профиля.

    встраиваемые микропроцессоры (микро ЭВМ) для автоматизированного управления отдельными устройствами и механизмами.

РФ испытывает потребность:

Супер ЭВМ ~ 100-200 шт.

Большие ЭВМ ~ 1000 шт.

Средние ЭВМ ~ 10 4 -10 5 шт