Иллюстрация в картинках. Из чего состоит процессор? Основные части и их функции Как работает цп

Прекрасно знают основные составляющие компьютера, но мало кто понимает, из чего состоит процессор. А между тем это главное устройство системы, которое выполняет арифметические и логические операции. Основная функция процессора состоит в получении информации, ее обработке и отдаче конечного результата. Звучит все просто, но на самом деле процесс этот сложный.

Из чего состоит процессор

ЦП ‒ это миниатюрная кремниевая пластина прямоугольной формы, которая содержит миллионы транзисторов (полупроводников). Именно они реализуют все функции, которые выполняет процессор.

Почти все современные процессоры состоят из следующих компонентов:

  1. Несколько ядер (редко 2, чаще 4 или 8), которые выполняют все функции. По сути, ядро представляет собой отдельный миниатюрный процессор. Несколько интегрированных в основной чип ядер параллельно работают над задачами, что ускоряет процесс обработки данных. Однако не всегда большее количество ядер означает более быструю работу чипа.
  2. Несколько уровней памяти КЭШ (2 или 3), благодаря чему время взаимодействия ОЗУ и процессора сокращается. Если информация находится в КЭШе, то время доступа к ней минимизировано. Следовательно, чем большим будет объем КЭШа, тем больше информации в него поместится и тем быстрее будет сам процессор.
  3. Контроллер ОЗУ и системной шины.
  4. Регистры ‒ ячейки памяти, где хранятся обрабатываемые данные. Они всегда имеют ограниченный размер (8, 16 или 32 бит).
  5. Сопроцессор. Отдельное ядро, которое предназначается для выполнения операций определенного типа. Чаще всего в виде сопроцессора выступает графическое ядро (видеокарта).
  6. Адресная шина, которая связывает чип со всеми подключенными к материнской плате устройствами.
  7. Шина данных - для связи процессора с оперативной памятью. По сути, шина представляет собой набор проводников, посредством которых передается или принимается электрический сигнал. И чем больше будет проводников, тем лучше.
  8. Шина синхронизации - позволяет контролировать такты и частоту работы процессора.
  9. Шина перезапуска - обнуляет состояние чипа.

Все эти элементы принимают участие в работе. Однако самым главным среди них, безусловно, является именно ядро. Все остальные указанные составляющие лишь помогают ему выполнять основную задачу. Теперь, когда вы понимаете, из чего состоит процессор, можно более детально рассмотреть его основной компонент.

Ядра

Говоря о том, из чего состоит центральный процессор, в первую очередь нужно упомянуть ядра, так как именно они представляют собой основные его части. Ядра включают в себя функциональные блоки, выполняющие арифметические или логические операции. В частности, можно выделить:

  1. Блок выборки, декодирования и выполнения инструкций.
  2. Блок сохранения результатов.
  3. Блок счетчика команд и т.д.

Как вы поняли, каждый из них выполняет определенную задачу. Например, блок выборки инструкций считывает их по указанному в счетчике команд адресу. В свою очередь, блоки декодирования определяют, что именно надо сделать процессору. В совокупности работа всех этих блоков и позволяет добиться выполнения указанной пользователем задачи.

Задача ядер

Отметим, что ядра могут выполнять только математические расчеты и операции сравнения, а также перемещать данные между ячейками ОЗУ. Впрочем, этого хватает, чтобы пользователи могли играть в игры на компьютере, смотреть фильмы, просматривать веб-страницы.

По сути, любая компьютерная программа состоит из простых команд: сложить, умножить, переместить, поделить, перейти к инструкции при выполнении условия. Конечно, это лишь примитивные команды, однако их объединение между собой позволяет создать сложную функцию.

Регистры

Из чего состоит процессор еще, кроме ядер? Регистры - второй важный его компонент. Как вы уже знаете, это быстрые ячейки памяти, где находятся обрабатываемые данные. Они бывают разными:

  1. A, B, C - используются для хранения информации во время обработки. Их всего три, но этого достаточно.
  2. EIP - в этом регистре хранится адрес следующей в очереди инструкции.
  3. ESP - адрес данных в ОЗУ.
  4. Z - здесь находится результат последней операции сравнения.

Этими регистрами процессор не ограничивается. Есть и другие, однако указанные выше являются самыми главными - именно ими чаще всего пользуется чип для обработки данных во время выполнения той или иной программы.

Заключение

Теперь вы знаете, из чего состоит процессор и какие его модули являются основными. Подобный состав чипов не является постоянным, так как они постепенно совершенствуются, добавляются новые модули, усовершенствуются старые. Однако сегодня то, из чего состоит процессор, его назначение и функционал являются именно такими, как описано выше.

Описанный выше состав и приблизительный принцип работы систем процессора упрощены до минимума. На самом деле весь процесс является более сложным, но для его понимания необходимо получать соответствующее образование.

2. В ходе своего развития полупроводниковые структуры постоянно эволюционируют. Поэтому принципы построения процессоров, количество входящих в их состав элементов, то, как организовано их взаимодействие, постоянно изменяются. Таким образом, CPU с одинаковыми основными принципами строения, принято называть процессорами одной архитектуры. А сами такие принципы называют архитектурой процессора (или микроархитектурой).

Несмотря на это, внутри одной и той же архитектуры некоторые процессоры могут довольно сильно отличаться друг от друга - частотами системной шины, техпроцессом производства, структурой и размером внутренней памяти и т.д.

3. Ни в коем случае нельзя судить о микропроцессоре только по такому показателю, как частота тактового сигнала, которая измеряется мега или гигагерцами. Иногда «проц», у которого тактовая частота меньше, может оказаться более продуктивным. Очень важными являются такие показатели как: количество тактов, которые необходимы для выполнения команды, количество команд, которые он может выполнять одновременно и др.

Оценка возможностей процессора (характеристики)

В быту, при оценке возможностей процессора необходимо обращать внимание на следующие показатели (как правило они указаны на упаковке устройства или в прайс-листе или каталоге магазина):

  • количество ядер. Многоядерные CPU содержат на одном кристалле (в одном корпусе) 2, 4 и т.д. вычислительных ядра. Увеличение количества ядер – один из самых эффективных способов значительного повышения мощности процессоров. Но необходимо учитывать, что программы, которые не поддерживают многоядерность (как правило это старые программы), на многоядерных процессорах быстрее работать не будут, т.к. не умеют использовать более одного ядра;
  • размер кеша. Кеш - очень быстрая внутренняя память процессора, используемая им в качестве своеобразного буфера в случае необходимости компенсации «перебоев» во время работы с оперативной памятью. Логично, что, чем больше кеш, тем лучше.
  • количество потоков – пропускная способность системы. Количество потоков часто не совпадает с количеством ядер. Например, четырехядерный Intel Core i7 работает в 8 потоков и по своей производительности опережает многие шестиядерные процессоры;
  • тактовая частота – величина, которая показывает, сколько операций (тактов) в единицу времени может произвести процессор. Логично, что, чем больше частота, тем больше операций он может выполнить, т.е. тем производительнее получается.
  • скорость шины, при помощи которой CPU соединен с системным контроллером, находящимся на материнской плате.
  • техпроцесс – чем он мельче, тем меньше энергии процессор потребляет и, значит, меньше греется.

Процессор — это главная микросхема компьютера. Как правило, она также является одним из самых высокотехнологичных и дорогих компонентов ПК. Несмотря на то что процессор — отдельное устройство, он имеет в своей структуре большое количество компонентов, отвечающих за конкретную функцию. Какова их специфика?

Процессор: функции устройства и история появления

Компонент ПК, который сейчас принято именовать центральным процессором, характеризуется достаточно интересной историей происхождения. Поэтому, для того чтобы понять его специфику, полезно будет исследовать некоторые ключевые факты об эволюции его разработки. Устройство, которое современному пользователю известно как центральный процессор, является результатом многолетнего совершенствования технологий производства вычислительных микросхем.

Со временем менялось видение инженерами структуры процессора. В ЭВМ первого и второго поколения соответствующие компоненты состояли из большого количества раздельных блоков, очень несхожих по решаемым задачам. Начиная с третьего поколения компьютеров функции процессора начали рассматриваться в более узком контексте. Инженеры-конструкторы ЭВМ определили, что это должно быть распознавание и интерпретация машинных команд, занесение их в регистры, а также управление другими аппаратными компонентами ПК. Все эти функции стали объединяться в одном устройстве.

Микропроцессоры

По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.

Структура современных процессоров

Центральный процессор современного ПК, ноутбука или планшета представлен ядром — теперь уже нормой считается, что их несколько, кэш-памятью на различных уровнях, а также контроллерами: ОЗУ, системной шины. Производительность микросхемы соответствующего типа определяется ее ключевыми характеристиками. В какой совокупности они могут быть представлены?

Наиболее значимые характеристики центрального процессора на современных ПК таковы: тип микроархитектуры (обычно указывается в нанометрах), тактовая частота (в гигагерцах), объем кэш-памяти на каждом уровне (в мегабайтах), энергопотребление (в ваттах), а также наличие или отсутствие графического модуля.

Изучим специфику работы некоторых ключевых модулей центрального процессора подробнее. Начнем с ядра.

Ядро процессора

Центральный процессор современного ПК всегда имеет ядро. В нем содержатся ключевые функциональные блоки микросхемы, посредством которых она выполняет необходимые логические и арифметические функции. Как правило, они представлены в некоторой совокупности элементов. Так, устройство центрального процессора чаще всего предполагает наличие блоков, которые отвечают за решение следующих задач:

Выборка и декодирование инструкций;

Выборка данных;

Выполнение инструкций;

Сохранение результатов вычислений;

Работа с прерываниями.

Также структура микросхем соответствующего типа дополняется управляющим блоком, запоминающим устройством, счетчиком команд, а также набором регистров. Рассмотрим специфику работы соответствующих компонентов подробнее.

Ядро процессора: компоненты

В числе ключевых блоков в ядре центрального процессора — тот, что отвечает за считывание инструкций, которые прописываются в адресе, зафиксированном в счетчике команд. Как правило, в течение одного такта выполняется сразу несколько операций соответствующего типа. Общее количество инструкций, подлежащих считыванию, предопределяется показателем в блоках декодирования. Главный принцип здесь — чтобы при каждом такте отмеченные компоненты были максимально загружены. С целью обеспечения соответствия данному критерию в структуре процессора могут присутствовать вспомогательные аппаратные элементы.

В блоке декодирования обрабатываются инструкции, определяющие алгоритм работы микросхемы в ходе решения тех или иных задач. Обеспечение их функционирования — сложная задача, как считают многие IT-специалисты. Это обусловлено, в частности, тем, что длина инструкции не всегда четко определена. Современные процессоры обычно включают 2 или 4 блока, в которых осуществляется соответствующее декодирование.

Касательно компонентов, отвечающих за выборку данных — их основная задача заключается в обеспечении приема команд из кэш-памяти либо ОЗУ, которые необходимы для обеспечения выполнения инструкций. В ядрах современных процессоров обычно присутствует несколько блоков соответствующего типа.

Управляющие компоненты, присутствующие в микросхеме, также базируются на декодированных инструкциях. Они призваны осуществлять контроль над работой блоков, которые ответственны за выполнение инструкций, а также распределять задачи между ними, контролировать своевременное их выполнение. Управляющие компоненты относятся к категории важнейших в структуре микропроцессоров.

В ядрах микросхем соответствующего типа присутствуют также блоки, отвечающие за корректное выполнение инструкций. В их структуре присутствуют такие элементы, как арифметическое и логическое устройство, а также компонент, отвечающий за вычисления с плавающей точкой.

Есть в составе ядер процессоров блоки, которые контролируют обработку расширения наборов, что установлены для инструкций. Данные алгоритмы, дополняющие основные команды, используются для повышения интенсивности обработки данных, осуществления процедур шифрования или дешифрования файлов. Решение подобных задач требует введения в структуру ядра микросхемы дополнительных регистров, а также наборов инструкций. Современные процессоры включают обычно следующие расширения: MMX (предназначены для кодирования аудио- и видеофайлов), SSE (применяются при распараллеливании вычислений), ATA (задействуется с целью ускорения работы программ и снижения уровня энергопотребления ПК), 3DNow (расширение мультимедийных возможностей компьютера), AES (шифрование данных), а также многие другие стандарты.

В структуре ядер процессора обычно также присутствуют блоки, отвечающие за сохранение результатов в ОЗУ в соответствии с адресом, который содержится в инструкции.

Важное значение имеет компонент ядра, который контролирует работу микросхемы с прерываниями. Данная функция позволяет процессору обеспечивать стабильность работы программ в условиях многозадачности.

Работа центрального процессора также связана с задействованием регистров. Данные компоненты являются аналогом ОЗУ, однако доступ к ним осуществляется в несколько раз быстрее. Объем соответствующего ресурса небольшой — как правило, он не превышает килобайта. Регистры классифицируются на несколько разновидностей. Это могут быть компоненты общего назначения, которые задействуются при выполнении арифметических или логических вычислений. Есть регистры специального назначения, которые могут включать системные данные, используемые процессором в ходе работы.

В структуре ядра процессора также присутствуют различные вспомогательные компоненты. Какие, например? Это может быть датчик, отслеживающий то, какова текущая температура центрального процессора. Если ее показатели выше установленных норм, то микросхема может направить сигнал модулям, отвечающим за работу вентиляторов — и они начнут вращаться быстрее. Есть в структуре ядра предсказатель переходов — компонент, который призван определять, какие именно команды будут выполняться после завершения определенных циклов операций, совершаемых микросхемой. Пример другого важного компонента — счетчик команд. Данный модуль фиксирует адрес соответствующего алгоритма, который передается микросхеме в момент начала выполнения им того или иного такта.

Такова структура ядра, которое входит в центральный процессор компьютера. Изучим теперь подробнее некоторые ключевые характеристики микросхем соответствующего типа. А именно: техпроцесс, тактовая частота, объем кэш-памяти, а также энергопотребление.

Характеристики процессора: тип техпроцесса

Развитие компьютерной техники принято связывать с появлением по мере совершенствования вычислительных технологий новых поколений ЭВМ. При этом, не считая показателей производительности, одним из критериев отнесения компьютера к тому или иному поколению может считаться его абсолютный размер. Самые первые ЭВМ были сопоставимы по величине с многоэтажным домом. Компьютеры второго поколения были сопоставимы по величине, к примеру, с диваном или пианино. ЭВМ следующего уровня уже были вплотную приближены к тем, что привычны для нас сейчас. В свою очередь, современные ПК — это компьютеры четвертого поколения.

Собственно, к чему все это? Дело в том, что в ходе эволюции ЭВМ сформировалось неофициальное правило: чем более технологично устройство, тем меньшими габаритами при той же производительности, а то и при большей — оно обладает. Оно в полной мере действует и в отношении рассматриваемой характеристики центрального процессора, а именно, техпроцесса его изготовления. В данном случае имеет значение расстояние между единичными кремниевыми кристаллами, формирующими структуру микросхемы. Чем оно меньше — тем больше плотность соответствующих элементов, которые размещает на себе плата центрального процессора. Тем более производительным он, соответственно, может считаться. Современные процессоры выполняются по техпроцессу 90-14 нм. Данный показатель имеет тенденцию к постепенному уменьшению.

Тактовая частота

Тактовая частота центрального процессора — один из ключевых показателей его производительности. Она определяет то, сколько операций в секунду может совершать микросхема. Чем их больше — тем более производителен процессор и компьютер в целом. Можно отметить, что данный параметр характеризует, прежде всего, ядро как самостоятельный модуль центрального процессора. То есть, если соответствующих компонентов на микросхеме несколько, то каждое из них будет работать с отдельной частотой. Некоторые IT-специалисты считают допустимым суммировать данные характеристики по всем ядрам. Что это значит? Если, например, на процессоре установлено 4 ядра с частотой 1 ГГц, то суммарный показатель производительности ПК, если следовать этой методологии, будет составлять 4 ГГц.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора. Правда, его задействовать нужно осторожно.

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Объем кэш-памяти

Современные процессоры оснащены модулями кэш-памяти. Основное их предназначение — временное размещение данных, как правило, представленных совокупностью особых команд и алгоритмов — тех, что задействуются в работе микросхемы наиболее часто. Что это дает на практике? Прежде всего то, что загрузка центрального процессора может быть уменьшена за счет того, что те самые команды и алгоритмы будут находиться в оперативном доступе. Микросхема, получив из кэш-памяти готовые инструкции, не тратит время на их выработку с нуля. В итоге работа компьютера идет быстрее.

Главная характеристика кэш-памяти — объем. Чем он больше, тем, соответственно, вместительнее данный модуль с точки зрения расположения тех самых инструкций и алгоритмов, задействуемых процессором. Тем больше вероятность, что микросхема будет всякий раз находить среди них нужные для себя и работать быстрее. Кэш-память на современных процессорах делится чаще всего на три уровня. Первый работает на базе наиболее быстрых и высокотехнологичных микросхем, остальные — медленнее. Объем кэш-памяти первого уровня на современных процессорах составляет порядка 128-256 КБ, второго — 1-8 МБ, третьего — может превышать 20 МБ.

Энергопотребление

Другой значимый параметр микросхемы — энергопотребление. Питание центрального процессора может предполагать значительное расходование электроэнергии. Современные модели микросхем потребляют порядка 40-50 Вт. В некоторых случаях данный параметр имеет экономическое значение — например, если речь идет об оснащении больших предприятий несколькими сотнями или тысячами компьютеров. Но не менее значимым фактором энергопотребление выступает в части адаптации процессоров к использованию на мобильных устройствах — ноутбуках, планшетах, смартфонах. Чем соответствующий показатель меньше, тем дольше будет автономная работа девайса.

Основные устройства компьютера «живут» в системном блоке. К ним относятся: материнская плата, процессор, видеокарта, оперативная память, жесткий диск. Но за его пределами, обычно на столе, «проживают» также не менее важные устройства компьютера. Такие как: монитор, мышь, клавиатура, колонки, принтер.

В этой статье мы рассмотрим, из чего состоит компьютер , как эти устройства выглядят, какую функцию выполняют и где они находятся.

Системный блок.

В первой категории мы разберём те устройства, или их еще называют комплектующие, которые «прячутся» в системной блоке. Они наиболее важны для его работы. Кстати, сразу можете заглянуть в системник. Это не сложно. Достаточно открутить два болта сзади системного блока и отодвинуть крышку в сторону, и тогда нам откроется вид важнейших устройств компьютера, по порядку которые, мы сейчас рассмотрим.

Материнская плата – это печатная плата, которая предназначена для подключения основных комплектующих компьютера. Часть из них, например, процессор или видеокарта устанавливается непосредственно на саму материнскую плату в предназначенный для этого разъем. А другая часть комплектующих, к примеру, жесткий диск или блок питания, подключается к материнской плате с помощью специальных кабелей.

Процессор – это микросхема и одновременно «мозг» компьютера. Почему? Потому что он отвечает за выполнение всех операций. Чем лучше процессор тем быстрее он будет выполнять эти самые операции, соответственно компьютер будет работать быстрее. Процессор конечно влияет на скорость работы компьютера, и даже очень сильно, но от вашего жесткого диска, видеокарты и оперативной памяти также будет зависеть скорость работы ПК. Так что самый мощный процессор не гарантирует большую скорость работы компьютера, если остальные комплектующие уже давно устарели.

3. Видеокарта.

Видеокарта или по-другому графический плата, предназначена для вывода картинки на экран монитора. Она также устанавливается в материнскую плату, в специальный разъем PSI-Express. Реже видеокарта может быть встроена в саму материнку, но её мощности чаще всего хватает только для офисных приложений и работы в интернете.

Оперативная память – это такая прямоугольная планка, похожа на картридж от старых игровых приставок. Она предназначена для временного хранения данных. К примеру, она хранит буфер обмена. Копировали мы какой-то текст на сайте, и тут же он попал в оперативку. Информация о запущенных программах, спящий режим компьютера и другие временные данные хранятся в оперативной памяти. Особенностью оперативки является то, что данные из неё после выключения компьютера полностью удаляются.

Жесткий диск, в отличие от оперативной памяти, предназначен для длительного хранения файлов. По-другому его называют винчестер. Он хранит данные на специальных пластинах. Также в последнее время распространились SSD диски.

К их особенности можно отнести высокую скорость работы, но тут же есть сразу минус – они дорого стоят. SSD диск на 64 гигабайта обойдется вам в цене также как винчестер на 750 гигабайт. Представляете сколько будет стоить SSD на несколько сотен гигабайт. Во, во! Но не стоит расстраиваться, можно купить SSD диск на 64 ГБ и использовать его в виде системного диска, то есть установить на него Windows. Говорят, что скорость работы увеличивается в несколько раз. Система стартует очень быстро, программы летают. Я планирую перейти на SSD, а обычные файлы хранить на традиционном жестком диске.

Дисковод нужен для работы с дисками. Хоть уже и гораздо реже используется, все-же на стационарных компьютерах он пока что не помешает. Как минимум дисковод пригодится для установки системы.

6. Системы охлаждения.

Система охлаждения – это вентиляторы, которые охлаждают комплектующие. Обычно установлено три и более кулеров. Обязательно один на процессоре, один на видеокарте, и один на блоке питания, а далее уже по желанию. Если будет что-то тепленьким, то желательно охлаждать. Устанавливаются также вентиляторы на жесткие диски и в самом корпусе. Если кулер в корпусе установлен на передней панели, то он забирает тепло, а кулеры установленные на заднем отсеке подают в системних холодный воздух.

Звуковая карта выводит звук на колонки. Обычно она встроена в материнскую плату. Но бывает, что она либо ломается, и поэтому покупается отдельно, либо же изначально качество стандартной владельца ПК не устраивает и он покупает другую звуковуху. В общем звуковая карта также имеет право быть в этом списке устройств для ПК.

Блок питания нужен для того, чтобы все вышеописанные устройства компьютера заработали. Он обеспечивает все комплектующие необходимым количеством электроэнергии.

8. Корпус

А чтобы материнскую плату, процессор, видеокарту, оперативную память, жесткий диск, дисковод, звуковую карту, блок питания и возможно какие-то дополнительные комплектующие было куда-то засунуть, нам понадобится корпус. Там все это аккуратно устанавливается, закручивается, подключается и начинает ежедневную жизнь, от включения до выключения. В корпусе поддерживается необходимая температура, и все защищено от повреждений.

В итоге мы получаем полноценный системный блок, со всеми важнейшими устройствами компьютера, которые нужны для его работы.

Периферийные устройства.

Ну а чтобы полноценно начать работать на компьютере, а не смотреть на «жужжащий» системный блок, нам понадобятся Периферийные устройства. К ним относятся те компоненты компьютера, которые за пределами системника.

Монитор само собой нужен, чтобы видеть то, с чем мы работаем. Видеокарта подает изображение на монитор. Между собой они подключены кабелем VGA или HDMI.

Клавиатура предназначена для ввода информации, ну само собой какая работа без полноценной клавиатуры. Текст напечатать, в игры поиграть, в интернете посидеть и везде нужна клавиатура.

3. Мышь.

Мышь нужна чтобы управлять курсором на экране. Водить его в разные стороны, кликать, открывать файлы и папки, вызывать различные функции и много другое. Также, как и без клавиатуры, без мыши никуда.

4. Колонки.

Колонки нужны в основном чтобы слушать музыку, смотреть фильмы и играть в игры. Кто еще сегодня использует колонки больше, чем ежедневно их воспроизводят обычные пользователи в этих задачах.

Принтер и сканер нужен чтобы печатать и сканировать документы и всё, всё необходимое в области печатанья. Или МФУ, многофункциональное устройство. Пригодится всем тем, кто часто что-то печатает, сканирует, делает ксерокопии и совершает много других задач с этим устройством.

В этой статье мы лишь кратко рассмотрели основные устройства компьютера , а в других, ссылки на которые вы видите ниже, мы подробно рассмотрим все наиболее популярные периферийные устройства, а также компоненты, которые входят в состав системного блока, то есть комплектующие.

Приятного чтения!

Описание и назначение процессоров

Определение 1

Центральный процессор (ЦП) – основной компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет процессом вычислений и координирует работу всех устройств ПК.

Чем мощнее процессор, тем выше быстродействие ПК.

Замечание

Центральный процессор часто называют просто процессором, ЦПУ (Центральное Процессорное Устройство) или CPU (Central Processing Unit), реже – кристаллом, камнем, хост-процессором.

Современные процессоры являются микропроцессорами.

Микропроцессор имеет вид интегральной схемы – тонкой пластинки из кристаллического кремния прямоугольной формы площадью в несколько квадратных миллиметров, на которой размещены схемы с миллиардами транзисторов и каналов для прохождения сигналов. Кристалл-пластинка помещен в пластмассовый или керамический корпус и соединен золотыми проводками с металлическими штырьками для подсоединения к системной плате ПК.

Рисунок 1. Микропроцессор Intel 4004 (1971 г.)

Рисунок 2. Микропроцессор Intel Pentium IV (2001 г.). Слева – вид сверху, справа – вид снизу

ЦП предназначен для автоматического выполнения программы.

Устройство процессора

Основными компонентами ЦП являются:

  • арифметико-логическое устройство (АЛУ) выполняет основные математические и логические операции;
  • управляющее устройство (УУ), от которого зависит согласованность работы компонентов ЦП и его связь с другими устройствами;
  • шины данных и адресные шины ;
  • регистры , в которых временно хранится текущая команда, исходные, промежуточные и конечные данные (результаты вычислений АЛУ);
  • счетчики команд ;
  • кэш-память хранит часто используемые данные и команды. Обращение в кэш-память гораздо быстрее, чем в оперативную память, поэтому, чем она больше, тем выше быстродействие ЦП.

Рисунок 3. Упрощенная схема процессора

Принципы работы процессора

ЦП работает под управлением программы, которая находится в оперативной памяти.

АЛУ получает данные и выполняет указанную операцию, записывая результат в один из свободных регистров.

Текущая команда находится в специальном регистре команд. При работе с текущей командой значение так называемого счетчика команд увеличивается, который затем указывает на следующую команду (исключением может быть только команда перехода).

Команда состоит из записи операции (которую нужно выполнить), адресов ячеек исходных данных и результата. По указанным в команде адресам берутся данные и помещаются в обычные регистры (в смысле не в регистр команды), получившийся результат тоже сначала помещается в регистр, а уж потом перемещается по своему адресу, указанному в команде.

Характеристики процессора

Тактовая частота указывает частоту, на которой работает ЦП. За $1$ такт выполняется несколько операций. Чем выше частота, тем выше быстродействие ПК. Тактовая частота современных процессоров измеряется в гигагерцах (ГГц): $1$ ГГц = $1$ миллиард тактов в секунду.

Для повышения производительности ЦП стали использовать несколько ядер, каждое из которых фактически является отдельным процессором. Чем больше ядер, тем выше производительность ПК.

Процессор связан с другими устройствами (например, с оперативной память ю) через шины данных, адреса и управления. Разрядность шин кратна 8 (т.к. имеем дело с байтами) и отличается для разных моделей, а также различна для шины данных и шины адреса.

Разрядность шины данных указывает на количество информации (в байтах), которое можно передать за $1$ раз (за $1$ такт). От разрядности адресной шины зависит максимальный объем оперативной памяти, с которым может работать ЦП.

От частоты системной шины зависит количество данных, которые передаются за отрезок времени. Для современных ПК за $1$ такт можно передать несколько бит. Важна также и пропускная способность шины, равная частоте системной шины, умноженной на количество бит, которые можно передать за $1$. Если частота системной шины равна $100$ Мгц, а за $1$ такт передается $2$ бита, то пропускная способность равна $200$ Мбит/сек.

Пропускная способность современных ПК исчисляется в гигабитах (или десятках гигабит) в секунду. Чем выше этот показатель, тем лучше. На производительность ЦП влияет также объем кэш-памяти.

Данные для работы ЦП поступают из оперативной памяти, но т.к. память медленнее ЦП, то он может часто простаивать. Во избежание этого между ЦП и оперативной памятью располагают кэш-память, которая быстрее оперативной. Она работает как буфер. Данные из оперативной памяти посылаются в кэш, а затем в ЦП. Когда ЦП требует следующее данное, то при наличии его в кэш-памяти оно берется из него, иначе происходит обращение к оперативной памяти. Если в программе выполняется последовательно одна команда за другой, то при выполнении одной команды коды следующих команд загружаются из оперативной памяти в кэш. Это сильно ускоряет работу, т.к. ожидание ЦП сокращается.

Замечание 1

Существует кэш-память трех видов:

  • Кэш-память $1$-го уровня самая быстрая, находится в ядре ЦП, поэтому имеет небольшие размеры ($8–128$ Кб).
  • Кэш-память $2$-го уровня находится в ЦП, но не в ядре. Она быстрее оперативной памяти, но медленнее кэш-памяти $1$-го уровня. Размер от $128$ Кбайт до нескольких Мбайт.
  • Кэш-память $3$-го уровня быстрее оперативной памяти, но медленнее кэш-памяти $2$-го уровня.

От объема этих видов памяти зависит скорость работы ЦП и соответственно компьютера.

ЦП может поддерживать работу только определенного вида оперативной памяти: $DDR$, $DDR2$ или $DDR3$. Чем быстрее работает оперативная память, тем выше производительность работы ЦП.

Следующая характеристика – сокет (разъем), в который вставляется ЦП. Если ЦП предназначен для определенного вида сокета, то его нельзя установить в другой. Между тем, на материнской плате находится только один сокет для ЦП и он должен соответствовать типу этого процессора.

Типы процессоров

Основной компанией, выпускающей ЦП для ПК, является компания Intel. Первым процессором для ПК был процессор $8086$. Следующей моделью была $80286$, далее $80386$, со временем цифру $80$ стали опускать и ЦП стали называть тремя цифрами: $286$, $386$ и т.д. Поколение процессоров часто называют семейством $x86$. Выпускаются и другие модели процессоров, например, семейства Alpha, Power PC и др. Компаниями-производителями ЦП также являются AMD, Cyrix, IBM, Texas Instruments.

В названии процессора часто можно встретить символы $X2$, $X3$, $X4$, что означает количество ядер. Например в названии Phenom $X3$ $8600$ символы $X3$ указывают на наличие трех ядер.

Итак, основными типами ЦП являются $8086$, $80286$, $80386$, $80486$, Pentium, Pentium Pro, Pentium MMX, Pentium II, Pentium III и Pentium IV. Celeron является урезанным вариантом процессора Pentium. После названия обычно указывается тактовая частота ЦП. Например, Celeron $450$ обозначает тип ЦП Celeron и его тактовую частоту – $450$ МГц.

Процессор нужно устанавливать на материнскую плату с соответствующей процессору частотой системной шины.

В последних моделях ЦП реализован механизм защиты от перегрева, т.е. ЦП при повышении температуры выше критической переходит на пониженную тактовую частоту, при которой потребляется меньше электроэнергии.

Определение 2

Если в вычислительной системе несколько параллельно работающих процессоров, то такие системы называются многопроцессорными .